Thermo-chemical Simulation of a Composite Offshore Vertical Axis Wind Turbine Blade
نویسندگان
چکیده
In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The obtained cure degree profiles for specific points match well with those in the literature. Following the validation case, the proposed numerical technique is applied to the modelling of the pultrusion of a composite blade which has a NACA0018 airfoil cross section. The effects of pulling speed and various set temperature schemes of heating platens on the quality of the composite NACA0018 blade are explored.
منابع مشابه
Unsteady aerodynamic analysis of different multi mw horizontal axis offshore wind turbine blade profiles on sst-k-ω model
To indicate the best airfoil profile for different sections of a blade, five airfoils; included S8xx, FFA and AH series was studied. Among the most popular wind power blades for this application were selected, in order to find the optimum performance. Nowadays, modern wind turbines are using blades with multi airfoils at different sections. SST-K-ω model with different wind speed at large scale...
متن کاملAerodynamic Characteristics of Asymmetric Airfoils Blade Small Vertical Axis Wind Turbines
In this paper, using sliding mesh model, the numerical simulation of small vertical axis wind turbine aerodynamic performance was studied with FLUENT software. Got change rule of four same thickness and different camber‘s NACA series asymmetrical airfoil moment coefficient of the wind turbine and wind power machine with the tip speed ratio. Wind turbine benchmark blade around the flow field was...
متن کاملAerodynamic Characteristics of Horizontal Axis Wind Turbine with Archimedes Spiral Blade
To investigate the aerodynamic characteristics of an Archimedes spiral wind turbine for urban-usage, both experimental and numerical studies were carried out. The Archimedes spiral blade was designed to produce wind power using drag and lift forces on the blade together. Instantaneous velocity fields were measured by two-dimensional PIV method in the near field of the blade. Mean velocity profi...
متن کاملUnsteady aerodynamic performance of Dual-Row H-Darrieus vertical axis wind turbine
H-rotor Vertical Axis Wind Turbine (VAWT) is one of the most efficient energy suppliers which have been investigated in many recent types of research. The aim of this work is to study the aerodynamic performance of a doubled-row H-Darrieus VAWT. First, an ordinary three-bladed VAWT with NACA4415 profile is simulated by means of 3D computational fluid dynamics (CFD) and results are compared to a...
متن کاملDesign and Implementation of the Rotor Blades of Small Horizontal Axis Wind Turbine
Since the renewable resources of energy have become extremely important, especially wind energy, scientists have begun to modify the design of the wind turbine components, mainly rotor blades. Aerodynamic design considered a major research field related to power production of a small horizontal wind turbine, especially in low wind speed locations. This study displays an approach to the selectio...
متن کامل